使用 oracle 数据库
clang &mysql
c语言简单操作mysql
clang & web
机器学习实战笔记
import numpy as np
class Network(object):
def __init__(self, sizes):
# 层数
self.num_layers = len(sizes)
# 各层神经元的数量 eg:[2,3,1]
self.sizes = sizes
# 偏置 eg:3x1,1
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
# 权重 eg:3x2,1x3
self.weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:])]
# 对应输入求输出
# a`=σ(w·a+b)
# σ S型激活函数
def feedforward(self, a):
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a
# 梯度下降-小批量数据
def SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):
# training_data 是一个(x,y)元组列表,训练输入和对应的期望输出
# epochs 迭代期数量
# mini_batch_size 采样时的小批量数据的大小
# eta学习速率 η
# test_data 如果可选参数可用则每次训练后会评估网络
training_data = list(training_data)
n = len(training_data)
if test_data:
test_data = list(test_data)
n_test = len(test_data)
for j in range(epochs):
# 随机打乱数据
random.shuffle(training_data)
# 数据分为小块
mini_batches = [
training_data[k:k+mini_batch_size]
for k in range(0, n, mini_batch_size)]
# 训练小块数据
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
# 输出验证
if test_data:
print("Epoch {} : {} / {}".format(j,self.evaluate(test_data),n_test));
print(self.biases[1])
else:
print("Epoch {} complete".format(j))
# 更新权值和偏置
def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
is the learning rate."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw
for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]
# 计算偏导数
def backprop(self, x, y):
"""Return a tuple ``(nabla_b, nabla_w)`` representing the
gradient for the cost function C_x. ``nabla_b`` and
``nabla_w`` are layer-by-layer lists of numpy arrays, similar
to ``self.biases`` and ``self.weights``."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It's a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in range(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w)
def evaluate(self, test_data):
"""Return the number of test inputs for which the neural
network outputs the correct result. Note that the neural
network's output is assumed to be the index of whichever
neuron in the final layer has the highest activation."""
test_results = [(np.argmax(self.feedforward(x)), y)
for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)
def cost_derivative(self, output_activations, y):
"""Return the vector of partial derivatives \partial C_x /
\partial a for the output activations."""
return (output_activations-y)
# S型函数 1/(1+e^-z)
def sigmoid(z):
return 1.0/(1.0+np.exp(-z))
# S型函数导数 e^-z/(1+e^-z)^2
def sigmoid_prime(z):
return sigmoid(z)*(1-sigmoid(z))
java 环境变量
新建2个环境变量 JAVA_HOME与 CLASS_PATH,点击“新建(W...)”。
变量名: JAVA_HOME
变量值:D:\Program Files\Java\jdk1.7.0_06(java安装路径)
变量名: CLASS_PATH
变量值:.;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar
[注意前面有一个点号,表示当前路径]
修改 PATH环境变量,选择“Path”,在变量值的最后处添加:
;%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin[注意前面要添加分号]
之后直接点击“确定”、“应用”等按钮,再按照上面的步骤键入Windows+R输入“cmd”进入控制台,现在无论输入“java”、“javac”、“Java -version”等命令均会成功显示。